
Compe��ve Security Assessment

Pulsar

Nov 17th, 2022

Secure3 secure3.io

$

Pulsar Competitive Security Assessment

Summary 2

Overview 3

Audit Scope 4

Code Assessment Findings 5

PUL-1:Functions cancelTermSwapTokenToToken , cancelTermSwapTokenToETH and

cancelTermSwapETHToToken should check whether token0 and token1 match the order of tokens in

LongTermOrders

6

PUL-2:Invalid check on orderIdStatusMap 7

PUL-3:No Upper Limit for the fee 8

PUL-4:No need to use SafeMath in solidity version 0.8+ 9

PUL-5:No slippage control when providing or removing liquidity 10

PUL-6:The Gaslimit Dos in executeVirtualOrdersUntilSpecifiedBlock 12

PUL-7:Tokens received after LongTermSwap may be smaller than expected due to precision loss 14

PUL-8:Unsupported fee-on-transfer tokens 16

PUL-9:Wrong usage of sortAmounts 18

PUL-10: RemoveLiquidity has the Potential to Completely Empty the Pair , which would Lead to

A Potential Fraud Risk.

19

PUL-11: safeTransferFrom lacks isContract check 21

PUL-12:no need to re-calculate k 23

PUL-13:redundant check 24

Disclaimer 25

1

Pulsar Competitive Security Assessment

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

2

Pulsar Competitive Security Assessment

Overview

Project Detail

Project Name Pulsar

Platform & Language Solidity

Codebase repo - https://github.com/PulsarSwap/TWAMM-Contracts/
audit commit - f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b
final commit - 9e1b42eb5f7a2fe4a859fb383714e499fe438ff6

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability
Level

Total Reported Acknowledged Fixed Mitigated Declined

Critical 1 0 0 1 0 0

Medium 6 0 0 3 1 2

Low 2 0 0 1 0 1

Informational 4 0 3 1 0 0

3

Pulsar Competitive Security Assessment

Audit Scope

File Commit Hash

contracts/TWAMM.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/Pair.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/libraries/LongTermOrders.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/libraries/BinarySearchTree.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/interfaces/IPair.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/interfaces/ITWAMM.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/libraries/OrderPool.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/libraries/Library.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/Factory.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/libraries/TransferHelper.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/interfaces/IFactory.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/libraries/SafeMath.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

contracts/interfaces/IWETH.sol f5cc7b0ea35f9e9a6872cdff62fb9c740ef7da5b

4

Pulsar Competitive Security Assessment

Code Assessment Findings

ID Name Category Severity Status Contributor

PUL-1 Functions
cancelTermSwapTokenToToken ,
cancelTermSwapTokenToETH and
cancelTermSwapETHToToken should
check whether token0 and token1
match the order of tokens in
LongTermOrders

Logical Medium Fixed zhiqiangxu

PUL-2 Invalid check on orderIdStatusMap Logical Low Fixed thereksfour

PUL-3 No Upper Limit for the fee Privilege
Related

Low Declined hellobloc

PUL-4 No need to use SafeMath in solidity
version 0.8+

Gas
Optimization

Informational Fixed 0xxm

PUL-5 No slippage control when providing or
removing liquidity

Logical Medium Fixed thereksfour

PUL-6 The Gaslimit Dos in
executeVirtualOrdersUntilSpecif
iedBlock

DOS Medium Declined hellobloc

PUL-7 Tokens received after LongTermSwap Language Medium Fixed thereksfour

may be smaller than expected due to
precision loss

Specific

PUL-8 Unsupported fee-on-transfer tokens Logical Medium Mitigated thereksfour

PUL-9 Wrong usage of sortAmounts Logical Medium Declined zhiqiangxu

PUL-10 RemoveLiquidity has the Potential to
Completely Empty the Pair , which
would Lead to A Potential Fraud Risk.

Logical Critical Fixed hellobloc

PUL-11 safeTransferFrom lacks
isContract check

Logical Informational Acknowled
ged

hellobloc

PUL-12 no need to re-calculate k Gas
Optimization

Informational Acknowled
ged

zhiqiangxu

PUL-13 redundant check Logical Informational Acknowled
ged

zhiqiangxu

5

Pulsar Competitive Security Assessment

PUL-1:Functions cancelTermSwapTokenToToken ,
cancelTermSwapTokenToETH and
cancelTermSwapETHToToken should check whether token0
and token1 match the order of tokens in LongTermOrders

Category Severity Code Reference Status Contributor

Logical Medium code/twamm/contracts/TWAMM.sol#
L491
code/twamm/contracts/TWAMM.sol#
L518
code/twamm/contracts/TWAMM.sol#
L543

Fixed zhiqiangxu

Code

491: (unsoldAmount, purchasedAmount) = IPair(pair).cancelLongTermSwap(

518: .cancelLongTermSwap(msg.sender, orderId);

543: .cancelLongTermSwap(msg.sender, orderId);

Description

zhiqiangxu : Here it's assuming token0 is the selling token, but it's not check. It's safer for cancelLongTermSwap
to also return the sellTokenId and check it in the calling side.

Recommendation

zhiqiangxu : Add a sellTokenId return value to cancelLongTermSwap and check token0 == sellTokenId
(the same issue exists in other functions that calls cancelLongTermSwap , won't repeat)

Client Response

Fixed. Added require(tokenSell == token0, "Wrong Sell Token"); to make sure the token0 is the
selling token.

6

Pulsar Competitive Security Assessment

PUL-2:Invalid check on orderIdStatusMap

Category Severity Code Reference Status Contributor

Logical Low code/twamm/contracts/libraries/Long
TermOrders.sol#L180-L181
code/twamm/contracts/libraries/Long
TermOrders.sol#L231-L232

Fixed thereksfour

Code

180: require(self.orderIdStatusMap[orderId] = true, "Order Invalid");
181: require(order.owner == sender, "Sender Must Be Order Owner");

231: require(self.orderIdStatusMap[orderId] = true, "Order Invalid");
232: require(order.owner == sender, "Sender Must Be Order Owner");

Description

thereksfour : In the withdrawProceedsFromLongTermSwap and cancelLongTermSwap functions, when
orderIdStatusMap is set to false, the check is invalid because the check on orderIdStatusMap is orderIdStatusMap
= true instead of orderIdStatusMap == true . Although this invalid check will not cause high risks because other
checks are sufficient, it may cause front-end display errors due to inaccurate revert messages. For example, calling
withdrawProceeds on a cancelled order will prompt Sales Rate Amount Must Be Positive instead of Order
Invalid .

Recommendation

thereksfour : Change to

- require(self.orderIdStatusMap[orderId] = true, "Order Invalid");
+ require(self.orderIdStatusMap[orderId], "Order Invalid");

Client Response

Fixed to correct require(self.orderIdStatusMap[orderId] == true, "Order Invalid"); statement.

7

Pulsar Competitive Security Assessment

PUL-3:No Upper Limit for the fee

Category Severity Code Reference Status Contributor

Privilege Related Low code/twamm/contracts/Factory.sol#L
64-L67

Declined hellobloc

Code

64: function setFeeArg(uint32 _feeArg) external override {
65: require(msg.sender == feeToSetter, "Factory: Forbidden");
66: feeArg = _feeArg;
67: }

Description

hellobloc : In the Factory contract of the TWAMM project, the project owner can set the fee for its pairs . This
allows the project owner to set a very high fee before the user's transaction is on-chain, thus causing a loss to the user.

function setFeeArg(uint32 _feeArg) external override {
 require(msg.sender == feeToSetter, "Factory: Forbidden");
 feeArg = _feeArg;
 }

Recommendation

hellobloc : We propose to constrain the setting of the fee to ensure that there is a check on its upper limit, and to use
multiple signatures for privileged users.

Client Response

The fee sent to feeTo equals to 1/(feeArg+1) . As the total fee decreases as the feeArg increases and it is
bound to 1.

8

Pulsar Competitive Security Assessment

PUL-4:No need to use SafeMath in solidity version 0.8+

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/twamm/contracts/libraries/Safe
Math.sol#L7

Fixed 0xxm

Code

7:library SafeMath {

Description

0xxm : Solidity provides the overflow checking for version above 0.8. The contract does not need to import the
SafeMath library for overflow checking, which can save gas.

Recommendation

0xxm : Remove SafeMath to save gas.

Client Response

Fixed and removed SafeMath use.

9

Pulsar Competitive Security Assessment

PUL-5:No slippage control when providing or removing
liquidity

Category Severity Code Reference Status Contributor

Logical Medium code/twamm/contracts/TWAMM.sol#
L176-L180
code/twamm/contracts/TWAMM.sol#
L207-L210
code/twamm/contracts/TWAMM.sol#
L230-L233
code/twamm/contracts/TWAMM.sol#
L262-L265

Fixed thereksfour

Code

176: amountIn0 = (lpTokenAmount * reserve0) / totalSupplyLP;
177: amountIn1 = (lpTokenAmount * reserve1) / totalSupplyLP;
178:
179: IERC20(token0).safeTransferFrom(msg.sender, pair, amountIn0);
180: IERC20(token1).safeTransferFrom(msg.sender, pair, amountIn1);

207: IERC20(token).safeTransferFrom(msg.sender, pair, amountTokenIn);
208: IWETH(WETH).deposit{value: amountETHIn}();
209: IERC20(WETH).safeTransfer(pair, amountETHIn);
210: IPair(pair).provideLiquidity(msg.sender, lpTokenAmount);

230: (uint256 amountOutA, uint256 amountOutB) = IPair(pair).removeLiquidity(
231: msg.sender,
232: lpTokenAmount
233:);

262: (uint256 amountOutA, uint256 amountOutB) = IPair(pair).removeLiquidity(
263: msg.sender,
264: lpTokenAmount
265:);

10

Pulsar Competitive Security Assessment

Description

thereksfour : In the addLiquidity* and withdrawLiquidity* functions, the number of tokens the user needs to provide or
receive is affected by the number of reserved tokens the contract currently has. Since the number of reserved tokens in
the contract changes after each swap, the actual number of tokens spent by the user is not the same as expected.
Consider the following scenario, the number of tokens A in the current Pair contract is 100, the number of tokens B is
10,000, and the number of LPs is 1,000. User A is ready to provide liquidity for 50 LPs and is expected to spend 50
tokens A and 500 tokens B. But in the same block, a swap transaction occurred before user A provided liquidity, and
user B exchanged 50 tokens A for 3333 tokens B. At this time, the number of tokens A in the Pair contract is 150, the
number of tokens B is 6667, and the number of LPs is 1000. User A needs to provide 7.5 tokens A and 333 tokens B to
obtain 50 LPs.

Recommendation

thereksfour : Consider adding amountInAmax/amountInBmax parameters to the addLiquidity* function to allow users to
control the tokens spent and adding amountOutAmin/amountOutBmin parameters in withdrawLiquidity* function to allow
users to control received tokens

Client Response

Fixed by adding amountOut0Min , amountOut1Min , amountTokenOutMin , amountETHOutMin parameters to
guarantee the minimum value required for the output amount.

11

Pulsar Competitive Security Assessment

PUL-6:The Gaslimit Dos in
executeVirtualOrdersUntilSpecifiedBlock

Category Severity Code Reference Status Contributor

DOS Medium code/twamm/contracts/libraries/Long
TermOrders.sol#353-369

Declined hellobloc

Code

353: for (uint256 i = 0; i < expiriesList.length; i++) {
354: if (
355: (OrderPoolA.salesRateEndingPerBlock[expiriesList[i]] > 0 ||
356: OrderPoolB.salesRateEndingPerBlock[expiriesList[i]] > 0) &&
357: (expiriesList[i] > self.lastVirtualOrderBlock &&
358: expiriesList[i] < blockNumber)
359:) {
360: executeVirtualTradesAndOrderExpiries(
361: self,
362: reserveMap,
363: expiriesList[i]
364:);
365: }
366: }
367:
368: executeVirtualTradesAndOrderExpiries(self, reserveMap, blockNumber);
369: }

12

Pulsar Competitive Security Assessment

Description

hellobloc : executeVirtualOrdersUntilSpecifiedBlock has a traversal of the expireblocklist , which will
cause the loop to traverse too many times when a large number of expireblocks are squeezed without updates,
thus reaching the transaction gaslimit .

Eventually, the project is permanently deactivated.

function executeVirtualOrdersUntilSpecifiedBlock(
 LongTermOrders storage self,
 mapping(address => uint256) storage reserveMap,
 uint256 blockNumber
) public {
 ...
 for (uint256 i = 0; i < expiriesList.length; i++) {
 if (
 (OrderPoolA.salesRateEndingPerBlock[expiriesList[i]] > 0 ||
 OrderPoolB.salesRateEndingPerBlock[expiriesList[i]] > 0) &&
 (expiriesList[i] > self.lastVirtualOrderBlock &&
 expiriesList[i] < blockNumber)
) {
 executeVirtualTradesAndOrderExpiries(
 self,
 reserveMap,
 expiriesList[i]
);
 }
 }
 ...
 }

Given that removeLiquidity emptying Pair will result in the risk of
executeVirtualOrdersUntilSpecifiedBlock revert. The possibility of a large number of expireblocks not
being updated becomes greater.

Recommendation

hellobloc : We recommend providing update removal methods for individual expired blocks and adding a upper limit
check for the corresponding data push operations.

Client Response

BinarySearchTree contract creates a tree structure from all the expired blocks. It cannot manually delete expired block.

13

Pulsar Competitive Security Assessment

PUL-7:Tokens received after LongTermSwap may be smaller
than expected due to precision loss

Category Severity Code Reference Status Contributor

Language Specific Medium code/twamm/contracts/libraries/Long
TermOrders.sol#L139-L140

Fixed thereksfour

Code

139: uint256 sellingRate = amount / (orderExpiry - currentBlock);
140:

Description

thereksfour : There is an precision loss when calculating the sellingRate in the performLongTermSwap function
Consider the following scenario, where self.orderBlockInterval = 500, block.number = 999, and the user plans to swap
10000 tokens in 2000 blocks After the following calculation, sellingRate = 9.990, due to the precision loss, sellingRate =
9 So the actual number of tokens swapped by the user is 9 * 1001 = 9009, not 10000

 uint256 currentBlock = block.number; // 999
 uint256 lastExpiryBlock = currentBlock - // 999 - 999 % 500 = 500
 (currentBlock % self.orderBlockInterval);
 uint256 orderExpiry = self.orderBlockInterval * // 500 * (2+1) + 500 = 2000
 (numberOfBlockIntervals + 1) +
 lastExpiryBlock;
 uint256 sellingRate = amount / (orderExpiry - currentBlock); // 10000 / (2000 - 999) =
10000 / 1001

Considering the decimals of most tokens, 10000 is a very small amount, but for some special tokens (Gemini dollar:
https://etherscan.io/token/0x056Fd409E1d7A124BD7017459dFEa2F387b6d5Cd, with a decimal of 2), this means that
$10 is lost when swapping a $100 token. So to be compatible with different tokens, it should be considered to keep three
digits in the calculation of the sellingRate.

14

Pulsar Competitive Security Assessment

Recommendation

thereksfour :

- 139 uint256 sellingRate = amount / (orderExpiry - currentBlock);
+ 139 uint256 sellingRate = amount * 1000 / (orderExpiry - currentBlock);

- 197: order.sellAmount = (block.number - order.submitBlock) * order.saleRate;
+ 197: order.sellAmount = (block.number - order.submitBlock) * order.saleRate / 1000;
 order.sellAmount =
 (order.expirationBlock - order.submitBlock) *
- 247: order.saleRate;
+ 247: order.saleRate / 1000;
 } else {
 order.sellAmount =
 (block.number - order.submitBlock) *
- 251: order.saleRate;
+ 251: order.saleRate / 1000;

Client Response

Fixed. Multiply by 10000 to reduce precision loss

15

Pulsar Competitive Security Assessment

PUL-8:Unsupported fee-on-transfer tokens

Category Severity Code Reference Status Contributor

Logical Medium code/twamm/contracts/Pair.sol#L215-
L224
code/twamm/contracts/TWAMM.sol#
L240-L245

Mitigated thereksfour

Code

215: IERC20(tokenA).safeTransfer(twamm, amountAOut);
216: IERC20(tokenB).safeTransfer(twamm, amountBOut);
217:
218: if (feeOn)
219: rootKLast = reserveMap[tokenA]
220: .fromUint()
221: .sqrt()
222: .mul(reserveMap[tokenB].fromUint().sqrt())
223: .toUint();
224: emit LiquidityRemoved(to, lpTokenAmount, amountAOut, amountBOut);

240:
241: require(
242: IERC20(token0).balanceOf(address(this)) >= amountOut0 &&
243: IERC20(token1).balanceOf(address(this)) >= amountOut1,
244: "Inaccurate Amount for Tokens."
245:);

Description

thereksfour : According to https://github.com/d-xo/weird-erc20/#fee-on-transfer, there are ERC20 tokens that charge
fee for every transfer() or transferFrom(). However, the current implementation does not support fee-on-transfer tokens.

For example, consider a user creates a pair with fee-on-transfer tokens and provides liquidity, then if the user withdraws
the liquidity, Pair.removeLiquidity sends the tokens to the twamm contract and returns amountAOut/amountBOut, and
since fees are charged in the process, the amount of tokens received by the twamm contract will be less than
amountAOut/amountBOut , and the following check will fail, resulting in the user not being able to remove the liquidity.

 require(
 IERC20(token0).balanceOf(address(this)) >= amountOut0 &&
 IERC20(token1).balanceOf(address(this)) >= amountOut1,
 "Inaccurate Amount for Tokens."
);

16

Pulsar Competitive Security Assessment

Recommendation

thereksfour : Consider limiting the tokens that can be used to create the pair. Or add support for such tokens.

Client Response

The issues is mitigated by the front end app restricts the creation of fee-on-transfer tokens pair.

17

Pulsar Competitive Security Assessment

PUL-9:Wrong usage of sortAmounts

Category Severity Code Reference Status Contributor

Logical Medium code/twamm/contracts/TWAMM.sol#
L234
code/twamm/contracts/TWAMM.sol#
L266

Declined zhiqiangxu

Code

234: (amountOut0, amountOut1) = Library.sortAmounts(

266: (amountTokenOut, amountETHOut) = Library.sortAmounts(

Description

zhiqiangxu : sortAmounts expect amountOutA to match token , amountOutB to match WETH , here it doesn't
necessarily hold.
zhiqiangxu : sortAmounts expect amountOutA to match token0 , amountOutB to match token1 , here it
doesn't necessarily hold.

Recommendation

zhiqiangxu : Find tokenA and tokenB by sortTokens(token0, token1) instead.
zhiqiangxu : Find tokenA and tokenB by sortTokens(token0, token1) instead.

Client Response

The output amountOutA and amountOutB from the IPair::removeLiquidity() function is already sorted
based on the token address, i.e. amountOutA corresponds to the lower address tokenA . The function
sortAmounts finds the correct amount for each token, and results amountOut0 is the amount associated with the
input parameter token0 and same goes to amountOut1 and token1 . Hence it is not an issue.

18

Pulsar Competitive Security Assessment

PUL-10: RemoveLiquidity has the Potential to Completely
Empty the Pair , which would Lead to A Potential Fraud Risk.

Category Severity Code Reference Status Contributor

Logical Critical code/twamm/contracts/Pair.sol#L129-
L158
code/twamm/contracts/Pair.sol#L202-
L244
code/twamm/contracts/libraries/Long
TermOrders.sol#L395-L402

Fixed hellobloc

Code

129: .fromUint()
130: .sqrt()
131: .mul(amountB.fromUint().sqrt())
132: .toUint();
133:
134: bool feeOn = mintFee(0, 0);
135: _mint(to, lpTokenAmount);
136:
137: if (feeOn) rootKLast = lpTokenAmount;
138: emit InitialLiquidityProvided(to, lpTokenAmount, amountA, amountB);
139: }
140:
141: ///@notice provide liquidity to the AMM
142: ///@param lpTokenAmount number of lp tokens to mint with new liquidity
143: function provideLiquidity(address to, uint256 lpTokenAmount)
144: external
145: override
146: checkCaller
147: nonReentrant
148: returns (uint256 amountAIn, uint256 amountBIn)
149: {
150: //execute virtual orders
151: longTermOrders.executeVirtualOrdersUntilSpecifiedBlock(
152: reserveMap,
153: block.number
154:);
155:
156: require(lpTokenAmount > 0, "Invalid Amount");
157: require(totalSupply() != 0, "No Liquidity Has Been Provided Yet");
158:

202: uint256 reserveA = reserveMap[tokenA];
203: uint256 reserveB = reserveMap[tokenB];
204:
205: //the ratio between the number of underlying tokens and the number of lp tokens must
remain invariant after burn
206: amountAOut = (reserveA * lpTokenAmount) / totalSupply();

207: amountBOut = (reserveB * lpTokenAmount) / totalSupply();
208:
209: reserveMap[tokenA] -= amountAOut;
210: reserveMap[tokenB] -= amountBOut;
211:
212: bool feeOn = mintFee(reserveA, reserveB);
213: _burn(to, lpTokenAmount);
214:
215: IERC20(tokenA).safeTransfer(twamm, amountAOut);
216: IERC20(tokenB).safeTransfer(twamm, amountBOut);
217:
218: if (feeOn)
219: rootKLast = reserveMap[tokenA]
220: .fromUint()
221: .sqrt()
222: .mul(reserveMap[tokenB].fromUint().sqrt())
223: .toUint();
224: emit LiquidityRemoved(to, lpTokenAmount, amountAOut, amountBOut);
225: }
226:
227: ///@notice instant swap a given amount of tokenA against embedded amm
228: function instantSwapFromAToB(address sender, uint256 amountAIn)
229: external
230: override
231: checkCaller
232: nonReentrant
233: returns (uint256 amountBOut)
234: {
235: require(
236: reserveMap[tokenA] > 0 && reserveMap[tokenB] > 0,
237: "Insufficient Liquidity"
238:);
239: require(amountAIn > 0, "Invalid Amount");
240: amountBOut = performInstantSwap(tokenA, tokenB, amountAIn);
241:
242: emit InstantSwapAToB(sender, amountAIn, amountBOut);
243: }
244:

395: tokenAOut =
396: ((tokenAStart + tokenAIn) * tokenBIn) /
397: (tokenBStart + tokenBIn);
398: tokenBOut =
399: ((tokenBStart + tokenBIn) * tokenAIn) /
400: (tokenAStart + tokenAIn);
401: ammEndTokenA = tokenAStart + tokenAIn - tokenAOut;
402: ammEndTokenB = tokenBStart + tokenBIn - tokenBOut;

19

Pulsar Competitive Security Assessment

Description

hellobloc : The first provision of liquidity in uniswapv2:pair locks MINIMUM_LIQUIDITY amount of liquidity
tokens, thus ensuring that no liquidity provider can completely empty the Pair .

 if (_totalSupply == 0) {
 liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
 _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY
tokens
 }

However, this design has not been extended to the Pulsar Protocol , which leads to the possibility that the provider
of all liquidity has the ability to empty the Pair , resulting in reserve and totalsupply becoming zero.

This will result in the following risks.

1. The result is that the executeVirtualOrdersUntilSpecifiedBlock operation cannot be
executed when there is only some long-term buy orders from A to B. This eventually causes a denial of
service for Pair . This further prevents the user from invoking operations such as
cancelLongTermSwap .

Reason The reason why executeVirtualOrdersUntilSpecifiedBlock cannot be executed is that
computeVirtualBalances will be run in it. And in computeVirtualBalances , a division operation with
(tokenBStart + tokenBIn) as the denominator is performed.

And since there are only buy orders from A to B in a long term order, i.e. tokenBIn = 0 , and tokenBStart =
reserve = 0 , the transaction is eventually revert. Code

 function computeVirtualBalances(
 uint256 tokenAStart,
 uint256 tokenBStart,
 uint256 tokenAIn,
 uint256 tokenBIn
)
 { ...
 tokenAOut =
 ((tokenAStart + tokenAIn) * tokenBIn) /
 (tokenBStart + tokenBIn);
 tokenBOut =
 ((tokenBStart + tokenBIn) * tokenAIn) /
 (tokenAStart + tokenAIn);
 ammEndTokenA = tokenAStart + tokenAIn - tokenAOut;
 ammEndTokenB = tokenBStart + tokenBIn - tokenBOut;
 }

2. This leads to the possibility of calling provideInitialLiquidity twice to set an unreasonable
price at low cost.

Reason The basis for the first liquidity addition is determined by totalSupply == 0 . However, when the
liquidity is completely removed, the value will be 0 . This will lead to malicious liquidity provider being able to set
an unreasonable price for Pair at low cost, which will eventually lead to longTermSwap users being unable to
cancel their orders and having to accept the unreasonable price for swap, resulting in fraudulent attacks. Code

function provideLiquidity(address to, uint256 lpTokenAmount)
 ...
 {

 ...
 reserveMap[tokenA] += amountAIn;
 reserveMap[tokenB] += amountBIn;
 }
function provideInitialLiquidity(
 address to,
 uint256 amountA,
 uint256 amountB
)
 ...
 {
 require(amountA > 0 && amountB > 0, "Invalid Amount");
 require(totalSupply() == 0, "Liquidity Has Already Been Provided");

 reserveMap[tokenA] = amountA;
 reserveMap[tokenB] = amountB;

 //initial LP amount is the geometric mean of supplied tokens
 lpTokenAmount = amountA
 .fromUint()
 .sqrt()
 .mul(amountB.fromUint().sqrt())
 .toUint();

 bool feeOn = mintFee(0, 0);
 _mint(to, lpTokenAmount);

 if (feeOn) rootKLast = lpTokenAmount;
 emit InitialLiquidityProvided(to, lpTokenAmount, amountA, amountB);
 }

The following restrictions may be required for the above attack.

1. the pool only exists from A to B or B to A in one of the buy orders.
2. feeto is 0x0 , otherwise it needs feeto address to cooperate with the evil
3. first in the removeLiquidity after a period of block time to provideInitialLiquidity

call.ecommendation:

Recommendation

hellobloc : We recommend locking in a certain amount of liquidity tokens at the time of the
provideInitialLiquidity to ensure that liquidity cannot be completely emptied.

Client Response

Fixed. We acknowledged this issue and fixed by turning on feeOn flag and set the feeArg equal to be 1000 . When
the feeOn is True, there will always be some lpToken in the protocol (not burned) and hence the pool will never be
zero.

20

Pulsar Competitive Security Assessment

PUL-11: safeTransferFrom lacks isContract check

Category Severity Code Reference Status Contributor

Logical Informational code/banana/contracts/libraries/Tran
sferHelper.sol#L32-L44
code/twamm/contracts/libraries/Tran
sferHelper.sol#L32-L44

Acknowledged hellobloc

Code

32: function safeTransferFrom(
33: address token,
34: address from,
35: address to,
36: uint256 value
37:) internal {
38: // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
39: (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from,
to, value));
40: require(
41: success && (data.length == 0 || abi.decode(data, (bool))),
42: "TransferHelper::transferFrom: transferFrom failed"
43:);
44: }

32: success && (data.length == 0 || abi.decode(data, (bool))),
33: "TransferHelper::safeTransfer: transfer failed"
34:);
35: }
36:
37: function safeTransferFrom(
38: address token,
39: address from,
40: address to,
41: uint256 value
42:) public {
43: // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
44: (bool success, bytes memory data) = token.call(

21

Pulsar Competitive Security Assessment

Description

hellobloc : The token address isContract check is missing in TransferHelper . We should ensure that the
token address exists code to ensure that an invalid call to the EOA's address is not executed.

function safeTransferFrom(
 address token,
 address from,
 address to,
 uint256 value
) internal {
 // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
 (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from,
to, value));
 require(
 success && (data.length == 0 || abi.decode(data, (bool))),
 "TransferHelper::transferFrom: transferFrom failed"
);
 }

Recommendation

hellobloc : We recommend adding the isContract() check for safeTransferFrom

Client Response

We acknowledged the submission and choose not to enhance.

22

Pulsar Competitive Security Assessment

PUL-12:no need to re-calculate k

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/twamm/contracts/libraries/Long
TermOrders.sol#L457

Acknowledged zhiqiangxu

Code

457: int256 eDenominator = aStart.sqrt().mul(bStart.sqrt()).inv();

Description

zhiqiangxu : k is already calculated and passed in as a parameter.

Recommendation

zhiqiangxu : int256 eDenominator = k.sqrt().inv();

Client Response

We acknowledged the submission and choose not to enhance.

23

Pulsar Competitive Security Assessment

PUL-13:redundant check

Category Severity Code Reference Status Contributor

Logical Informational code/twamm/contracts/libraries/Binar
ySearchTree.sol#L185

Acknowledged zhiqiangxu

Code

185: } else if (curNode.left == 0 && curNode.right != 0) {

Description

zhiqiangxu : In this branch, curNode.left == 0 is guaranteed

Recommendation

zhiqiangxu : remove the curNode.left == 0 check

Client Response

We acknowledged the submission and choose not to enhance.

24

Pulsar Competitive Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the
services set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior
written consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

25

