
Public

SMART CONTRACT AUDIT REPORT

for

PulsarSwap

Prepared By: Patrick Lou

PeckShield
April 21, 2022

1/24 PeckShield Audit Report #: 2022-116

contact@peckshield.com

Public

Document Properties

Client Pulsar
Title Smart Contract Audit Report
Target PulsarSwap
Version 1.0
Author Luck Hu, Xiaotao Wu
Auditors Luck Hu, Xiaotao Wu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 21, 2022 Luck Hu, Xiaotao Wu Final Release
1.0-rc April 1, 2022 Xiaotao Wu Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 183 5897 7782
Email contact@peckshield.com

2/24 PeckShield Audit Report #: 2022-116

Public

Contents

1 Introduction 4
1.1 About PulsarSwap . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Missing Access Control in Pair . 11
3.2 Accommodation Of Non-ERC20-Compliant Tokens 12
3.3 Improved WETH Token Handling in TWAMM . 15
3.4 Out-of-Gas Risk In executeVirtualOrdersUntilCurrentBlock() 17
3.5 Lack Of Calling updatePrice() In Pair::provideInitialLiquidity() 18
3.6 Incorrect orderIdStatusMap Update Logic In withdrawProceedsFromLongTermSwap() 20

4 Conclusion 22

References 23

3/24 PeckShield Audit Report #: 2022-116

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
PulsarSwap protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts is well designed and
engineered, though it can be further improved by addressing our suggestions. This document outlines
our audit results.

1.1 About PulsarSwap

PulsarSwap is the implementation of Time-Weighted Average Market Maker (TWAMM) that effectively com-
bines embedded AMM, LongTerm Orders, Order Pool, and scalable reward distribution to enable not only
Uniswap-like DEXs, but also other AMMs with algorithmic trading TWAP. Compared to AMM , TWAMM reduces
the price slippage associated with large trades, thus reducing trader losses. The basic information of
the audited protocol is as follows:

Table 1.1: Basic Information of PulsarSwap

Item Description
Name Pulsar

Website https://pulsarswap.com/
Type Solidity Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report April 21, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/PulsarSwap/TWAMM-Contracts.git (27b5b3b)

4/24 PeckShield Audit Report #: 2022-116

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/PulsarSwap/TWAMM-Contracts.git (8c7d701)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa

ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract

5/24 PeckShield Audit Report #: 2022-116

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow

Kill-Switch Mechanism
Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/24 PeckShield Audit Report #: 2022-116

Public

is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/24 PeckShield Audit Report #: 2022-116

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/24 PeckShield Audit Report #: 2022-116

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the PulsarSwap smart con-
tracts. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logic, examine system operations, and place DeFi-related aspects under
scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 3

Low 2

Informational 0

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/24 PeckShield Audit Report #: 2022-116

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
3 medium-severity vulnerabilities, and 2 low-severity vulnerabilities.

Table 2.1: Key PulsarSwap Audit Findings

ID Severity Title Category Status
PVE-001 High Missing Access Control in Pair Security Features Resolved
PVE-002 Low Accommodation of Non-ERC20-

Compliant Tokens
Coding Practices Resolved

PVE-003 Medium Improved WETH Token Handling in
TWAMM

Business Logic Resolved

PVE-004 Medium Out-of-Gas Risk In executeVirtu-
alOrdersUntilCurrentBlock()

Time and State Confirmed

PVE-005 Medium Lack Of Calling updatePrice() In
Pair::provideInitialLiquidity()

Business Logic Resolved

PVE-006 Low Incorrect orderIdStatusMap Update
Logic In withdrawProceedsFrom-
LongTermSwap()

Business Logic Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/24 PeckShield Audit Report #: 2022-116

Public

3 | Detailed Results

3.1 Missing Access Control in Pair

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: Pair

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the PulsarSwap protocol, there is a Pair contract which implements the actual pool for any two
ERC20 tokens. In the Pair contract, it provides a series of interfaces for LPs to add/remove liquidity,
and for traders to exchange tokens. While examining these interfaces, we notice the existence of
missed access control authorization that need to be corrected.

To elaborate, we show below the code snippet of the removeLiquidity() routine. As the name
indicates, this routine is designed to remove liquidity from current pool for the given LP (identified by
the to argument). It comes to our attention that there is no access control restriction enforced on
this routine, which makes the removeLiquidity() routine opened to the public. As a result, anyone
could invoke it to remove liquidity from the pool on behalf of any LP.

166 f unc t i on r emov eL i q u i d i t y (address to , uint256 lpTokenAmount)
167 ex te rna l
168 o v e r r i d e
169 l o c k
170 nonReent rant
171 {
172 r equ i r e (
173 lpTokenAmount <= t o t a l S u p p l y () ,
174 "Not Enough Lp Tokens Available"
175) ;
176 upda t eP r i c e (rese rveMap [tokenA] , rese rveMap [tokenB]) ;

178 // execute virtual orders

11/24 PeckShield Audit Report #: 2022-116

Public

179 longTermOrders . e x e c u t eV i r t u a lO r d e r sUn t i l C u r r e n tB l o c k (rese rveMap) ;

181 //the ratio between the number of underlying tokens and the number of lp tokens
must remain invariant after burn

182 uint256 amountAOut = (rese rveMap [tokenA] ∗ lpTokenAmount) /
183 t o t a l S u p p l y () ;
184 uint256 amountBOut = (rese rveMap [tokenB] ∗ lpTokenAmount) /
185 t o t a l S u p p l y () ;

187 rese rveMap [tokenA] −= amountAOut ;
188 rese rveMap [tokenB] −= amountBOut ;

190 _burn (to , lpTokenAmount) ;

192 IERC20 (tokenA) . t r a n s f e r (to , amountAOut) ;
193 IERC20 (tokenB) . t r a n s f e r (to , amountBOut) ;

195 emit L iqu id i t yRemoved (to , lpTokenAmount) ;
196 }

Listing 3.1: Pair :: removeLiquidity ()

Our further study shows that the access control authorization could be granted to the TWAMM

contract which is a dedicated router for the Pair contract. Note there are some other routines share
the same issue in the Pair contract. Such as the provideInitialLiquidity()/provideLiquidity()/

instantSwapFromAToB()/longTermSwapFromAToB() routines, etc.

Recommendation Add the necessary access control authorization to the above mentioned
routines in the Pair contract.

Status This issue has been fixed in this commit: 8c7d701.

3.2 Accommodation Of Non-ERC20-Compliant Tokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Pair

• Category: Coding Practices [6]

• CWE subcategory: CWE-1109 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transferFrom() routine and possible idiosyncrasies from current widely-used token contracts.

12/24 PeckShield Audit Report #: 2022-116

https://github.com/PulsarSwap/TWAMM-Contracts/commit/8c7d701

Public

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transferFrom(), there is a check, i.e., if (balances[_from] >= _value

&& allowed[_from][msg.sender] >= _value && balances[_to] + _value >= balances[_to]). If the check
fails, it returns false. However, the transaction still proceeds successfully without being reverted.
This is not compliant with the ERC20 standard and may cause issues if not handled properly. Specif-
ically, the ERC20 standard specifies the following: “Transfers _value amount of tokens from address
_from to address _to, and MUST fire the Transfer event. The function SHOULD throw unless the
_from account has deliberately authorized the sender of the message via some mechanism.”

64 function transfer(address _to , uint _value) returns (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 if (balances[msg.sender] >= _value && balances[_to] + _value >= balances[_to]) {
67 balances[msg.sender] -= _value;
68 balances[_to] += _value;
69 Transfer(msg.sender , _to , _value);
70 return true;
71 } else { return false; }
72 }
73 function transferFrom(address _from , address _to , uint _value) returns (bool) {
74 if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value &&

balances[_to] + _value >= balances[_to]) {
75 balances[_to] += _value;
76 balances[_from] -= _value;
77 allowed[_from][msg.sender] -= _value;
78 Transfer(_from , _to , _value);
79 return true;
80 } else { return false; }
81 }

Listing 3.2: ZRX.sol

Because of that, a normal call to transferFrom() is suggested to use the safe version, i.e.,
safeTransferFrom(), In essence, it is a wrapper around ERC20 operations that may either throw
on failure or return false without reverts. Moreover, the safe version also supports tokens that return
no value (and instead revert or throw on failure). Note that non-reverting calls are assumed to be
successful. Similarly, there is a safe version of transfer() as well, i.e., safeTransfer().

In the following, we show the Pair::provideLiquidity() routine. If the ZRX token is supported
as either of the tokenA/tokenB in the pool, the unsafe version of IERC20(tokenA).transferFrom(to,

address(this), amountAIn); (line 158 and 159) may return false if the pool (spender) does not have
enough allowance from the token owner (given by the to argument). But the Pair::provideLiquidity

() routine expects the transferFrom() to revert on failure. Based on this, we may intend to replace
the transferFrom() (line 158 and 159) with safeTransferFrom().

132 function provideLiquidity(address to , uint256 lpTokenAmount)
133 external
134 override

13/24 PeckShield Audit Report #: 2022-116

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

135 lock
136 nonReentrant
137 {
138 require(
139 totalSupply () != 0,
140 "No Liquidity Has Been Provided Yet , Need To Call provideInitialLiquidity ()"
141);
142 updatePrice(reserveMap[tokenA], reserveMap[tokenB]);
143
144 // execute virtual orders
145 longTermOrders.executeVirtualOrdersUntilCurrentBlock(reserveMap);
146
147 //the ratio between the number of underlying tokens and the number of lp tokens

must remain invariant after mint
148 uint256 amountAIn = (lpTokenAmount * reserveMap[tokenA]) /
149 totalSupply ();
150 uint256 amountBIn = (lpTokenAmount * reserveMap[tokenB]) /
151 totalSupply ();
152
153 reserveMap[tokenA] += amountAIn;
154 reserveMap[tokenB] += amountBIn;
155
156 _mint(to , lpTokenAmount);
157
158 IERC20(tokenA).transferFrom(to, address(this), amountAIn);
159 IERC20(tokenB).transferFrom(to, address(this), amountBIn);
160
161 emit LiquidityProvided(to, lpTokenAmount);
162 }

Listing 3.3: Pair::provideLiquidity()

Note the same issue also exists in other routines, such as the provideInitialLiquidity()/removeLiquidity

()/performInstantSwap() routines in the Pair contract, and the performLongTermSwap()/cancelLongTermSwap

()/withdrawProceedsFromLongTermSwap() routines in the LongTermOrders library.

Recommendation Accommodate the above-mentioned idiosyncrasy with safe-version imple-
mentation of ERC20-related transfer() and transferFrom().

Status This issue has been fixed in this commit: 8c7d701.

14/24 PeckShield Audit Report #: 2022-116

https://github.com/PulsarSwap/TWAMM-Contracts/commit/8c7d701

Public

3.3 Improved WETH Token Handling in TWAMM

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: TWAMM

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned earlier, the Pair contract supports users to create pair for any two ERC20 tokens,
including the WETH token which is the ERC20 wrapper for the native ETH token. To make it convenient
for users to exchange with the native ETH directly, the TWAMM contract is designed as a router to take
the native ETH as the input/output token. While examining these ETH related routines in the TWAMM

contract, we notice the existence of improper ETH/WETH handling that need to be corrected.
To elaborate, we show below the code snippet of the TWAMM::addInitialLiquidityETH() routine.

As the name indicates, this routine is designed to add initial liquidity to ETH related pool. It comes to
our attention that the routine receives ETH from the LP and deposits the ETH to the WETH contract (line
101). However, the new WETH tokens are minted to the TWAMM contract, while not the LP. Moreover,
after the liquidity is added, the TWAMM contract will refund the remaining ETH back to the LP (line 105).
But as mentioned earlier, all the received ETH has been deposited to the WETH contract (line 101).

86 f unc t i on a d d I n i t i a l L i q u i d i t y ETH (
87 address token ,
88 uint256 amountToken ,
89 uint256 amountETH ,
90 uint256 d e a d l i n e
91) ex te rna l payable v i r t u a l o v e r r i d e en su r e (d e a d l i n e) {
92 r equ i r e (
93 I F a c t o r y (f a c t o r y) . g e tPa i r (token , WETH) != address (0) ,
94 "No Existing Pair Found , Create Pair First!"
95) ;
96 address p a i r = L ib r a r y . p a i r F o r (f a c t o r y , token , WETH) ;
97 (address tokenA ,) = L ib r a r y . s o r tTokens (token , WETH) ;
98 (uint256 amountA , uint256 amountB) = tokenA == token
99 ? (amountToken , amountETH)

100 : (amountETH , amountToken) ;
101 IWETH10(WETH) . d e p o s i t { va lue : msg . va lue }() ;
102 I P a i r (p a i r) . p r o v i d e I n i t i a l L i q u i d i t y (msg . sender , amountA , amountB) ;
103 // refund dust eth , if any
104 i f (msg . va lue > amountETH) {
105 Tran s f e rH e l p e r . sa feTrans fe rETH (msg . sender , msg . va lue − amountETH) ;
106 }
107 }

Listing 3.4: TWAMM::addInitialLiquidityETH()

15/24 PeckShield Audit Report #: 2022-116

Public

What is more, when we further look into the code of the Pair::provideInitialLiquidity() routine
(as shown below), we notice that the input tokens for liquidity providing are directly transferred from
the LP (given by the to argument), while not the msg.sender (TWAMM in our example). That is to
say, the LP shall keep both the input tokens in its balance before adding the liquidity. So in the
TWAMM::addInitialLiquidityETH() routine, the WETH shall be minted to the LP, not the TWAMM.

86 f unc t i on p r o v i d e I n i t i a l L i q u i d i t y (
87 address to ,
88 uint256 amountA ,
89 uint256 amountB
90) ex te rna l o v e r r i d e l o c k nonReent rant {
91 r equ i r e (
92 t o t a l S u p p l y () == 0 ,
93 "Liquidity Has Already Been Provided , Need To Call provideLiquidity ()") ;

95 rese rveMap [tokenA] = amountA ;
96 rese rveMap [tokenB] = amountB ;

98 // initial LP amount is the geometric mean of supplied tokens
99 uint256 lpAmount = amountA

100 . f romUint ()
101 . s q r t ()
102 . mul (amountB . f romUint () . s q r t ())
103 . t oU in t () ; // - MINIMUM_LIQUIDITY;
104 // _mint(address (0), MINIMUM_LIQUIDITY); // permanently lock the first

MINIMUM_LIQUIDITY tokens // TODO: uncomment
105 _mint (to , lpAmount) ;
106 IERC20 (tokenA) . t r an s f e rF r om (to , address (t h i s) , amountA) ;
107 IERC20 (tokenB) . t r an s f e rF r om (to , address (t h i s) , amountB) ;

109 emit I n i t i a l L i q u i d i t y P r o v i d e d (to , amountA , amountB) ;
110 }

Listing 3.5: Pair :: provideInitialLiquidity ()

Note similar issues exist in all other ETH related routines in the TWAMM contract, such as the
addLiquidityETH()/withdrawLiquidityETH()/instantSwapTokenToETH()/instantSwapETHToToken() routines,
etc.

Recommendation Revise all the ETH related routines to properly route the ETH and the WETH

between the LP and the pool.

Status This issue has been fixed in this commit: 8c7d701.

16/24 PeckShield Audit Report #: 2022-116

https://github.com/PulsarSwap/TWAMM-Contracts/commit/8c7d701

Public

3.4 Out-of-Gas Risk In
executeVirtualOrdersUntilCurrentBlock()

• ID: PVE-004

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: LongTermOrdersLib

• Category: Time and State [8]

• CWE subcategory: CWE-682 [3]

Description

In the PulsarSwap protocol, the executeVirtualOrdersUntilCurrentBlock() function will be triggered
when a user provides liquidity, removes liquidity, performs instant swap, performs long term swap, can-
cels long term swap, or withdraws proceeds from long term swap. This executeVirtualOrdersUntilCurrentBlock
() function will execute all pending virtual orders until current block is reached. However, if the
operations that can trigger the execution of the executeVirtualOrdersUntilCurrentBlock() function
does not occur for a long time, then the number of pending virtual orders could be large enough such
that the subsequent execution of executeVirtualOrdersUntilCurrentBlock() could lead to out-of-gas
(lines 284-291).

275 ///@notice executes all virtual orders until current block is reached.
276 function executeVirtualOrdersUntilCurrentBlock(
277 LongTermOrders storage self ,
278 mapping(address => uint256) storage reserveMap
279) internal {
280 uint256 nextExpiryBlock = self.lastVirtualOrderBlock -
281 (self.lastVirtualOrderBlock % self.orderBlockInterval) +
282 self.orderBlockInterval;
283 // iterate through blocks eligible for order expires , moving state forward
284 while (nextExpiryBlock < block.number) {
285 executeVirtualTradesAndOrderExpiries(
286 self ,
287 reserveMap ,
288 nextExpiryBlock
289);
290 nextExpiryBlock += self.orderBlockInterval;
291 }
292 //finally , move state to current block if necessary
293 if (self.lastVirtualOrderBlock != block.number) {
294 executeVirtualTradesAndOrderExpiries(
295 self ,
296 reserveMap ,
297 block.number
298);
299 }

17/24 PeckShield Audit Report #: 2022-116

Public

300 }

Listing 3.6: LongTermOrdersLib::executeVirtualOrdersUntilCurrentBlock()

Recommendation Take into consideration the scenario where there may exist a large number
of virtual orders waiting to be executed.

Status This issue has been confirmed.

3.5 Lack Of Calling updatePrice() In
Pair::provideInitialLiquidity()

• ID: PVE-005

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: Pair

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In the PulsarSwap protocol, the Pair contract provides an external provideInitialLiquidity() for users
to provide initial liquidity. This function can be called by a user only when the totalSupply of the Pair

contract is equal to 0. When analyzing this initial liquidity-providing routine provideInitialLiquidity

(), we notice there is a lack of invoking updatePrice() to update the price accumulators before
transferring assets to the contracts.

103 ///@notice provide initial liquidity to the amm. This sets the relative price
between tokens

104 function provideInitialLiquidity(
105 address to ,
106 uint256 amountA ,
107 uint256 amountB
108) external override lock nonReentrant {
109 require(
110 totalSupply () == 0,
111 "Liquidity Has Already Been Provided , Need To Call provideLiquidity ()"
112);
113
114 reserveMap[tokenA] = amountA;
115 reserveMap[tokenB] = amountB;
116
117 // initial LP amount is the geometric mean of supplied tokens
118 uint256 lpAmount = amountA
119 .fromUint ()
120 .sqrt()

18/24 PeckShield Audit Report #: 2022-116

Public

121 .mul(amountB.fromUint ().sqrt())
122 .toUint (); // - MINIMUM_LIQUIDITY;
123 // _mint(address (0), MINIMUM_LIQUIDITY); // permanently lock the first

MINIMUM_LIQUIDITY tokens // TODO: uncomment
124 _mint(to , lpAmount);
125 IERC20(tokenA).transferFrom(to, address(this), amountA);
126 IERC20(tokenB).transferFrom(to, address(this), amountB);
127
128 emit InitialLiquidityProvided(to, amountA , amountB);
129 }

Listing 3.7: Pair::provideInitialLiquidity()

If the call to updatePrice() is not invoked in the provideInitialLiquidity() routine, the value
of the state variable blockTimestampLast will remain 0. The calculation of timeElapsed in the sub-
sequent call of updatePrice() will be not correct (line 85), thus the calculations for state variables
priceACumulativeLast/priceBCumulativeLast will also be not correct.

82 // update price accumulators , on the first call per block
83 function updatePrice(uint256 reserveA , uint256 reserveB) private {
84 uint32 blockTimestamp = uint32(block.timestamp % 2**32);
85 uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
86 if (timeElapsed > 0 && reserveA != 0 && reserveB != 0) {
87 // * never overflows , and + overflow is desired
88 priceACumulativeLast +=
89 uint256(
90 UQ112x112.encode(uint112(reserveB)).uqdiv(uint112(reserveA))
91) *
92 timeElapsed;
93 priceBCumulativeLast +=
94 uint256(
95 UQ112x112.encode(uint112(reserveA)).uqdiv(uint112(reserveB))
96) *
97 timeElapsed;
98 }
99 blockTimestampLast = blockTimestamp;

100 emit UpdatePrice(reserveA , reserveB);
101 }

Listing 3.8: Pair::updatePrice()

Note similar issue also exists in the executeVirtualOrders() routine of the same contract.

Recommendation Timely invoke updatePrice() for the above-mentioned functions.

Status This issue has been fixed in this commit: 8c7d701.

19/24 PeckShield Audit Report #: 2022-116

https://github.com/PulsarSwap/TWAMM-Contracts/commit/8c7d701

Public

3.6 Incorrect orderIdStatusMap Update Logic In
withdrawProceedsFromLongTermSwap()

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LongTermOrdersLib

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In the PulsarSwap protocol, a user can withdraw proceeds from his/her long term swap order and this
can be done before or after the order has expired. If the order has expired, the total proceeds of this
order will be sent to the user. If the order has expired, the total proceeds collected for this order will
be sent to the user. If the order has not yet expired, the proceeds accumulated so far for this order
will be sent to the user. When analyzing this withdrawProceedsFromLongTermSwap() routine, we notice
the current update logic for mapping type orderIdStatusMap is not correct.

To elaborate, we show below its code snippet. Specifically, an order status should be updated
to false only when this order has expired, instead of updating the order status to false regardless of
whether the order has expired or not (line 216).

189 ///@notice withdraw proceeds from a long term swap (can be expired or ongoing)
190 function withdrawProceedsFromLongTermSwap(
191 LongTermOrders storage self ,
192 address sender ,
193 uint256 orderId ,
194 mapping(address => uint256) storage reserveMap
195) internal {
196 // update virtual order state
197 executeVirtualOrdersUntilCurrentBlock(self , reserveMap);
198
199 Order storage order = self.orderMap[orderId];
200 require(order.owner == sender , "Sender Must Be Order Owner");
201
202 OrderPoolLib.OrderPool storage OrderPool = self.OrderPoolMap[
203 order.sellTokenId
204];
205 uint256 proceeds = OrderPool.withdrawProceeds(orderId);
206
207 // charge LP fee
208 uint256 proceedsMinusFee = (proceeds * (10000 - LP_FEE)) / 10000;
209
210 require(proceedsMinusFee > 0, "No Proceeds To Withdraw");
211 // transfer to owner
212 IERC20(order.buyTokenId).transfer(sender , proceedsMinusFee);
213

20/24 PeckShield Audit Report #: 2022-116

Public

214 // delete orderId from account list
215 // removeOrderId(self , orderId , msg.sender);
216 self.orderIdStatusMap[orderId] = false;
217 }

Listing 3.9: LongTermOrdersLib::withdrawProceedsFromLongTermSwap()

Recommendation Update the order status to false only when this order has expired.

Status This issue has been fixed in this commit: 8c7d701.

21/24 PeckShield Audit Report #: 2022-116

https://github.com/PulsarSwap/TWAMM-Contracts/commit/8c7d701

Public

4 | Conclusion

In this audit, we have analyzed the PulsarSwap design and implementation. PulsarSwap is the imple-
mentation of Time-Weighted Average Market Maker (TWAMM) that effectively combines embedded AMM,
LongTerm Orders, Order Pool, and scalable reward distribution to enable not only Uniswap-like DEXs,
but also other AMMs with algorithmic trading TWAP. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

22/24 PeckShield Audit Report #: 2022-116

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

23/24 PeckShield Audit Report #: 2022-116

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

24/24 PeckShield Audit Report #: 2022-116

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About PulsarSwap
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Missing Access Control in Pair
	Accommodation Of Non-ERC20-Compliant Tokens
	Improved WETH Token Handling in TWAMM
	Out-of-Gas Risk In executeVirtualOrdersUntilCurrentBlock()
	Lack Of Calling updatePrice() In Pair::provideInitialLiquidity()
	Incorrect orderIdStatusMap Update Logic In withdrawProceedsFromLongTermSwap()

	Conclusion
	References

